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I1I. METRIC-CONNECTION THEORIES AS THE GAUGE THEORIES

OF SPACETIME SYMMETRIES
1. TFibre Bundle Description of Gauge Theories
In this chapter I wish to develop an analogy bet&een the

metric—connection theories of gravity and the gauge theories of ele-
mentary‘particle interactions. Iﬁ order to make this analogy, I need
to give an appropriate description of the géugertheories. In this
section I give such a description in the highlf ﬁathematical languége
of fibre bundles and explain it in the more mundane language of the
physicist.

In the fibre bundle language, a gauge th&0ry with gaﬁge group, G,
prescribes the following geometrical objects:

‘a. a principal G-bundle, P, over_spacetime ﬁ;.

b. a G-vector bundle, E, associated to P with representation,

R, acting on the typical fibre, V;
c. a global.gross section, ¢, of the bundle, E; and
d. a connection, A,‘on the bundles, P and E.

A particiilar gauge theory is specified by giving the gauge grouﬁ, G,

‘the representation, R, and an action functiomal, S{y,A]. A classical

sqlutioﬁ of this theory is any choice of the bundles, P and E, together
with a cross sectiou; Vv, and a connection, A, which make the action
statiqnary. |

What deoes all this mathematics mean? The rigotrous definitions
appear in Appendix B. However, I explain it here by giving an example.
Suppose one wants to consider a gauge theory of the weak (and eléétro—
magnetic) interactions in which the leptons and quarks have 16 flavors
and the gauge group is U(16). In a particular cheice of gauge, the

lepton wave function, x, is just 16 complex functions on spacetime, M.




20

(I am ignoring the spinor nature of the lepton wave function.) It is
convenient to indicate the gauge by a label, a, and to count the components
| ‘ Y S

by an index, k = 1..,16. Thus the lepton wave function is % and at a

16

point, p € M, its value,.%k(p), is an element of ¢, Under a chénge of

gauge, these 16 numbers mix according to a U(16) transformation, gaB(P):

ok _ k 8j
X (@) = [gas(p)] 5 X _(p)- (1)

The gauge transformation is global if gaB(p) is independent of p: éther-,
wise it is local. | |

Is there a gauge invariant way of descriBing the lepton wave
functionf Yes! Simply put an abstract 16 dimensional complex vector
space, Fp, at each point, p. The value of the lepton wave function, X
at a.point, P, is a vector, x(p), in the space, Fp. Making a choice of
gauge (say the u—gaugé) simply correspogdg to making a choice of bésis
(gay %k(p) ) in each space, FP. The lepton wave function at p may be

expanded in this basis as

x@ = &0 Ko, @)

and the components, %ka), are the description of y(p) in the a-gauge.
Upon making the gauge transformation (1), the basis is also changed

according to
& =& @ g @1, . - 3)

-so that x(p) in (2) remains invariant.
But there are too many bases! If one were to allow arbitrary bases,
then under a change of bases the components of x(p) could change by a

GL(16,C) transformation rather than just a U(16) transformation. The
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" easiest way to place a restriction on the choice of bases so that they

are always related by a U(16) transformation, is to assume that there

is an hermitian form, ¢, on each vector space, FP, and to require the

frames, %k’ to be orthonormal relative to ¢. Thus

3@ =0 (E@ , @ ) =8y W

Two such frames are always related by a U(16) tiansformation, gaB(P)’

since

o = (8@ L & @) = 1g, 1 " 1e @)1 6,
' &)
(If the gauge group is other than U(16), then oﬁher or additional restric-
tions must be placed on the class of admissible ffames.)
_ Of course the wvarious vector spa&es, FP, must be'giued together so
that it makes sense to say that the wave funetion. x({p), is continuous
or differentiable in p; The union, B, of all the vector spaces, F_, with
a suitable topology is an-example of a U(1l6)-vector bundle. The wave

function, x, may be regarded as a map, x: M » B, such that x(p) ¢ Fp < B.

_Sﬁch a map is called a global cross section of the bundle, B.

The set, P, of all orthonormal frames, %k(p), at all points p e M,
with'a topology induced by that of B, is an example of a principal U(16) -
bundle. A local orthonormal frame field for the bundle, B, mé& be re-
garded as a map, gk : U > P, such that %k(p) is an orthonormal basis for
Fp. Such a map is calléd a local cross section of the bundle, P.

The bundles, P and B, are called associated in that a change of gauge

(or orthonormal frame field) in the bundle, B, corresponds to a change of

_gauge (or local cross section) in the bundle, P. (The rigorous definitions

of G-vector bundles, principal G-bundles, associated G-bundles, and cross

sections appear in Appendix B.)




I
S

22

How does this discgssion of a U(16) gauge theory reiate to the
general fibre bundle description'of a gauge'theory at the beginning of
thisAsection? The orthonormal frame bundle,.P, is the principal G-
bundle mentioned in that description. What are E, ¥ and A? |

The cross section, Y, is the vector field whose components are
the components of the wave functions of all of the source fields. (T
use the term matter field to denote any dynamic fieid on spacetime
other than the spacetime metric, the spacetime connection, and any other.
gravitational field. I use the term sourée field to denote any matter
field other than the gauge potgntials. Thus fhe source fields include
the leptons, the quarks, the Goldstone-Higgs fields, etc.) In a particular
choice of gauge, the vector field, ¥, has values in a vector space, V, and
undef @ gauge transformation it transforms according to a representation,
R, which is the direct sum of the representations for all the source .fields.
Putting a copy, Vp, of the wvector spéce, V, at each point, P £ M, one
ob-tains the G-vector bundle, E. Notice t-hat. the bundle, B, is a sub-
vector bundle of the bundle, E, .and the lepton wave funetion, yx, is the
projection of the cross section, w,.into the subbundle, B. Further, the
bundles, P, B and E, are all associlated in that a choice (or change) of
géuge in one of them corresponds to a choice (or change) of gauge in. the
others.

Finally, the'connection, A, describes the gauge potentials. As
discussed in Appenéix B, in each gaﬁge (say the a=-gauge) thé connection
determines a 1-form, z, with values in £G, the Lie algebra.of G.' This
1-form can be expanded in a coordinate basis, dxa, for the 1-forms and

for LG:

a dimensionless basis, TP,

o aP a
A=A 4 TP dz=~ ., . (6)




’»"1\.

23

The components, A a’ are the gauge potentials in the a-gauge. Under
the gauge transformation (3), the gauge potentials transform according

to

1 3« -1

B Tpeg teg 0.(ag) - )

a TP B gaB a P gaB
From the gauge potentials, A 4° One defines the gauge fields,
%p %p ®p P % %R

= - Q- '
Flp =38, - Q8+ E o AT A, (8)

where the fPQR are the dimensioniess structure constants of‘ﬂG defined

by

P P o
g Tl = E e T - )

The curvature is then the LG valued 2-form

T dx® A ax’. (10)

These transform covariantly according to

B

o -1 ,
F=28,Fey:> (11)
and
o ‘ R
P _ P Q .
F ab ad(gaB) Q F ab *? - Q2

where ad denotes the adjoint representation of G acting on JG.
Returning to the U(16) example, the connection induces a co-
variant derivative on the vector bundles, B and E. Since the cross

section, ¥, of the bundle, B, transforms as in (1) according to the

~defining representation of U(16), its covariant derivative is

o o o o
k k P k 73
= + .
Vax Bax A a(TP) i X _ (13)
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.Similarly, the cross section, §, of the bundle, E, transforms according

to the representation, R:

3
v = g W (14)

vhere mow j, k = 1...N. So its covariant derivative is

k % % k%3
aaw + A a(RTB) 5 v {15)

Va¢

The gauge potentials are often called compensating fields because
the non—-covariant second term in their transformation law (7) exactly
cancels the non-covariant term in the transformation of the partial

o o o

o.
derivative Sax in Vaxk (or Baw in Vawk). Thus the covariant

derivatives transform covariantly:

ry

% _ \k
vxo= (guB) § Vax . _ (16)
O Kk _ B | ' |

From now on I work primarily in a single gauge; so I will no longer
write the gauge label, o, unless necessary.

Notice that in equations (8), (13) and (15), I have chosen fPQR’
T?, and RTP to be dimensionless. Hence, APa has the dimensions

(].ength)—l and FPa has the dimensions (length)_z. In the case of

b

electromagnetism, whose gauge group is U(l), there is only one generator,

TO, which may be chosen as T0 = 1 in the defining representation and is

- then represented by RT0 =n 1 in the complex representation with electric

, o o
chzrge q = n e. In that case, A a and F ab 2Te related to the conven-

conv conv .

, and field, Fab .

by

_ e _,conv o _e _conv
52" fic Aa . F ab fic Fab - (18)
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Again considering the general gauge theory, the gauge potentials,
AP , and the source field; P, are used to construct the action func-
. a

tional, S[¢4A]: which must be invariant under gauge transformations.

It is usually assumed that the action is local; i.e. that it may be

- written as

Stwoal = [ 1, atx a9
where the matter Lagrangian,

3™y A, 04, ..., B(n)A), - (20)

Ly = Ly @0, oo,

is a strictly local function of ¥, A, and a finite number of their

defivatives. (A function, £ = f(gi), is a strictl& loecal function of

the functions, 8y if the value of £ at a point, X, only depends on

the values of the gi's at the point, x.) It is also usually assumed

that the Lagrangian, LH’ is a scalar under gauge transformations. I

- make both of these assumptions throughout the thesis.

The matter Lagrangian for the hypothetical U(16) theory might contain

the term,

fic P FQab

- Y F ] ' (21)
16wg2 ?Q ab | :

as a kinetic Lagrangian for the gauge fields, and the term,

fic

=5, k
Zm %5k X 1y

u _ ¢
VU .ﬁ)X s (22)

to describe the leptons. Notice that in each of these termsg there is an
inner product of some form: YPQ is a group metric; i.e. a symmetric bilinear

form on the Lie algebra. ¢jk is the hermitian form mentioned above equation

(4).
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It is usually assumed that these inner products are invariant under
gauge transformations: i.e. that the matrices, YPQ and ¢jk have been chosen
as fixed sets of numbers independent of position and independent of the
choice of gauge. For example, equation (4) fixés ¢jk as ij and equation
(5) shows that ajk is invariant under U(16) - transformations. Given an
invariant inner product on each of the fundamental representations, one
can construct an invariant immer product on any other representation
(although it may not be unique). Since an invariant metric is just a
collection of constants, it is not varied in finding field equations:

Further, the covariant derivative of an invariant inner product is zero,

va¢jk =0, VaYPQ = 0. (23)

So the indices on fields may be raised and lowered before or after taking
covariant derivatives. Cénversely, if the connection satisfies equations
(23) then it is always possible to reduce tﬁe group of both the bundle
and the connection to the subgroup which léaveé the metric invariant.

However, it is not always possible to find an invariant inner product.

For example, the defining representation of GL(16,C) has no invariant

hermitiaﬁ form. 'In that case, in order to construct a scalar Lagrangian,
it-may be desirable to introduce a non~iﬁvariant inner product as a new
dynamic variable. It would then be desirable to introduce a kinetric
Lagrangian for the inner product. (Since the inner products on the fun-
damental represeutafions induce inner products on the other fepresentations,
it is only necessary to introduce a‘kinetic Lagrangian for the inner pro-
ducts of the fundamental representations.)

For'example, in a GL(iG,C) gauge theory, thé Lagrangian (22) is still
appropriate for the leptons except that ¢jk is now a function of position

in spacetime. The hermitian form, ¢jk’ then induces a position dependent
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group metric, , on the Lie algebra of GL(16,C) which can be used in

Tpq '
the gauge Lagrangian (21). Since the covariant derivative of ¢jk may

no- lenger vanish, one must be careful to specify whether indices are raised

or lowered before or after taking covariant derivatives. Further, since

4

a®5x may not vanish, one can introduce a kinetic Lagrangian for ¢jk such

ag
nj | km,_a o )
0T e W) o | (26)

k’ _
T point out that the inner product field, ¢jk’ with the kinetic

where ¢nJ'is the inverse of ¢j

Lagrangian (24) behaves much like a Goldstone-Higgs field; By restricting

to those gauges in which ¢jk = Sjk, one reduces the group of the bundle

from GL(1§,C) to U(16). However, if vaquk £ 0, thén ‘the GL(16,C) -
connection does not reduce. Rather, it decomposes into a U(16) - connection -
arnd mary residual gauge fields. The Lagrangian (24) becomes a mass term for
all of the residual.gauge fields with ¢jk absorbed as the longitudinal com-

ponents. Thus the symmetry is broken. The iomer product field, ¢ differs

3k’
from a Goldstone-Higgs field in that there are no residual massive or mass-
less scalar fields.

7 The‘inner product field, ¢jk’ may alsc be regarded as.a gauge potential
in addition to the gauge connection, APa' From this point of vigw, Va¢jk
should be regarded as the gauge field analogous fo the gauge éurvature, FPab'
When FPab = 0, the dynamig field, APa, may be eliminated from the theory..
Similarly, when Va¢jk = 0, the dynamic field, ¢jk’ may.be eliminated. 1In

spite of these analogies, in. the following discussion of the matter Lagrangian,

I treat ¢jk'as just another source field included within .
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The gauge theory is called global if the connection, A?a, is re-

. T P
quired to be flat; i.e. the curvature vanishes, F b - 0. In that case

it is always possible to find a choice of gauge in which the connection
also vanishes, APa = 0. BSuch a gauge is determined uniquely up to a

gilobal gauge transformation. The constraint, FP = {, can be imposed

ab

by including in the Lagrangian a term which is a Lagrange multiplier
times this constraint. Alternétively and equivalently, it can be im—
posed by setting APa = 0 in the actiomn, S[¢,A], and only vérying P in -

the global gauge theory action,
Siv¥l = Sly,0] = j LM(w,..;,a(m)¢,o,...,0) VCE'an. (25)

Any gauge theory which is not global is called local. Thus a

local gauge theory may have some classical solutions in which FP =0,

ab

but must also have some solutions in which FPab‘# 0.
The matter Lagrangian (20} for a local gauge theory may be de-

composed as follows: First, there 1s a constant term, L., which may be

C
obtained by setting both ¢y = 0 and A = 0;

L, = LM(O,...,O). (26)

1t is usually assumed that the eﬁergy density of the matter Lagrangian
has a minimum and the constant term is usually adjusted so that the
minimum is zero. Then the energy density is positive definite.

Second, there is a source Lagrangian, L_,, obtained by setting A = 0

8

" ip the non-constant part of the Lagrangian:

Ls(lb,-..,a(m) (m) (27)

B = Ly Waeesd™p0,.0.,0) - 1.

c

is the Lagrangian of the corresponding global gauge

S

Notice that L, + LC

theory.
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Similarly, there is a gauge Lagrangian, L,, obtained by setting

A

¢ = 0 in the non-constant part of the Lagrangian:

LA(A,...,B(“)A) = LM(O,...;O,A,...,a(n)A) - LC-. (28)

The combination, LA-+ LC’ is the Lagrangian for the source free gauge

theory.

Finally, the remainder is the interaction Lagraﬁgian,‘LI, defined
so that the total matter Lagrangian is
L, = LA(A,...,B(n)A) + Ls(w,...,a(m)np)
+ LI(xp,...,a(m)w, Ayeenyd™a) 4 Le- (29)

The sum Lsr+ LI is the interacting source Lagrangian, while LA + LI

is the interacting gauge Lagrangian.

The gauge theory is said to be minimally coupled if the interacting

gsource Lagrangian can be obtained from the (global gauge theory) source'

Lagrangian by replacing all partial derivatives by covariant derivatives:

(m) a(n)

a(m)¢) + Lo @aeeesd Y, Ay,

Ls(lb,---, A)

= L (e e, v(m)xp). (30)

A gauge theory does not need to be minimally coupled although it is
usually assumed, I will state the assumption when I make it.

I follow Fairchild [1977 ] and make a distinction between a gauge
theory and a Yang-Mills theory. A gauge theory is called a Yang-Mills

theory if the gauge Lagrangian is chosen as the Yang-Mills Lagrangian:

P ab

fic
L, = = - F F 3 (31)
A LYM 16ﬁg2 ab P
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where g is a dimensionless coupling constant. In the case of electro-
magnetism with the units chosen as in equatidn (18), the Yang-Mills

Lagrangian (31) reduces to the Maxwell -Lagrangian:

fic o ab
= = - 2
LA LMax 167 F ab Fo ? : (2)

where o = ezl(ﬁc) is the fine structure constant. A gauge theory does
not need to be a Yang-Mills theory although it is usually assumed. I
will state the assumption when I make it.

A weaker assumption is that the gauge Lagrangian is minimally

constructed. This means that the gauge Lagrangian only depends on the

, P .. . . . .
gauge fields, F ab® and a finite number of its covariant derivatives;

- ' (p) :
LA = LA(F,...,V F) . (33

In fact, at least for the case when LA depends on no higher than first
' P
derivatives of A " the requirement that LA be a scalar under gauge trans-

formations implies that LA is minimally constructed. The procf is similar

to that for Noether's theorem. T do mot know whether such a proof

_generalizes to higher derivatives.
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2. Fibre Bundle Description of Metric-Connection Theories
Now that I have given a fibre bundle description of gauge

zheories, I give a corresponding description of metric—conmnection theories.

-The analogy will be cbvious., Also the small but important'differences

will be clarified. As with the gauge theories, I discuss the fibre bundle
description of metric~connection theories in more physical language. The

spacetime symmetry group, G, can be any group which has a 4~&imensiona1 real

‘Terresentation, R,» acting on R*. The most familiar groups are GL(4,R),

0(3,1,R) = the Lorentz group, SL(2,C), and I0(3,1,R) = the inhomogeneous
Lorentz or Poincare group. However, there are mahy other possible groups.

In the fibre bundle language, a metric-connection theory with space-

- tine symmetfy group, G, prescribes the following'geometrical objects:

‘a. a pfincipal G-bundle, P, over spacetime M;
b. a G-vector bundle, E, associated to P with representation,
R, acting on the typical fiber, V;
c. & globgl cross section, §, of the bundle, E;
d. a metric, g, on the tangent bundle, TM, to spacetime, M;
"e. a soldering 1-form, 6, which makes TM into a'G—vector bundle
agsociated to P with representation, RT; and
f. a connection 1l-form, T, on the associated G—bundles, P, E and TM.
A particular metric-connection theéry is specified by giving the spacetime
syrmetry group, G, the represenfationS,RT and R, and an action funetional,
S[z,g,S,P]. A classical solution of this theory is any choice of the
manifold, M, and the associated G-bundles,P, E and TM, together with a Cross
éection, P, a‘metric, g, a soldering l-form, 9, and a connection, T, which

—aze the action stationary.
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In this description of meﬁric-connection theories,'I have assumed
that there are no gauge fields for internal symmetries or that any
internal gauge syumetry is global. To obtain a metric-commection theory
with a local internal gauge symmetry, simply let G be the direct pro-
duct of the spacetime symmetry group, Gl’ and the internal symmetry group,

G2, (o some more complicated unification such as using GL(2,C) to unify

" gravity and electromagnetism as discussed in Section 3) and replace T by

the direct sum of the spacetime connection, T, and the gauge comnection, A.

Then the above description of a metric-connection theory still holds,‘where
RT simply ignores the gauge part of G, and the action S{v,g,6,F,A] is now
also a function of the gauge connection.

The major difference between a metric-connection theory and any other
gauge fheory is that for a metric-connection theory, the tangent bundle,

™, to spacetime must be a G-vector bundle with a 4-dimensional real re-

presentation, RT, and must be associated to the principal G-bundle, P.

In other words, there must exist a preferred class of frameé on TM, called

the admissible tangent frames, and any two admissible frames at the same

spacetime point must be related by a transformation belonging to the re-
presentation, RT, of the group, G. Fsr example, if G is the conformal

orthogonal group, C0(3,1,R), then the adﬁissible frames must be conformal
Qrthonormal according_to'the metric, g. The set of all admissible frames

at all points of M is called the admissible tangent frame bundle, RT(P),

and forms a subbundle of the general'linear frame bundle, GL(M), which
consists of qll frames at all points of M, ,

The bundle, RT(P), may be specified by giving a collection of local

freme fields,

%u : U, > TU, (1)
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stich that the domains cover M,

Do, = | (2)
o
-and on each overlap, Ua n US , the frame fields are related by an RT(G)
transformation,
o ; B -1.v - o .
eu - eV[RTA(IB] u L] ’ o . (3)

" where the spacetime gauge transformation is

hg:U NU,>G W

af B

The bundle, RT(P),3is then the set of all frames relatred to the %u by
RT(G) transformations. Equivalently, the bundle, RT(E), may be specified
by giving a collection of local l-form frame fields,

g’]—f -+ * - ’ 5
..Uu TUa, (5

{dual to the %p) such that ;he domains cover M and on each overlap, Um A ﬁB,
they are related by

¥ = [RTAGB]“\)' g . O (6)

Such a collection of l-forms, gu s 1s called a base soldering 1-form, 6,
which makes TM into a G-vector buﬁdle with representation RTf (Notice
the analogy between the definition of a soldering l-form, 6, and the de-
finition in Appendix B of a connection l-form, I'. Also notice that I
now use Aaﬁ as the gauge transformation insfead of gaB to avoid confusion
with the metric, guv')

For a given set of spacetime gauge transformations, AdB’ as in (4),
there may be more than one set of 1-form frame fields, gu, satisfying (6).

Each set may specify a different way to identify TM as a G-vector bundle.
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Thus the geometrical purpose of the soldring l1-form, 6, is to specify
exactly how the admissiblé frame bundle, RT(P}, sits inside of the general
linear frame_bundle, GL(M). |

There may also exist a preferred class of spinor frames, called the

admigsible spinor frames, which are related by a representation,.RS, of

the group, G. These make up the admissible spinor frame bundle, RS(P).
In Section 3, I discuss the possible spacetime symmetry groups, G,
the corresponding principal bundle, P, the representatiom, RT’ the ad-
missible tangent frames, and when appropriate, the representation, R_,
and the admissible spinor frames. I concentrate most on the homogeneous
groups. A spacetime symmetry group, G, is called homogeneéus i1f either

RT or RS is effective. (A representation, R, of a group, G, is effective

if for all A £ G other than the identity, its representation, R(A), is

not the identity.) Otherwise, G is inhomogeneous. For example, the groups
GL(4,R), 0(3,1,R) = the Lorentz group, and SL(2,C) are homogeneous, while
I0(3,1,R) = the inhomogeneous Lorentz or Poincare group is inhomogeneous.

There are many other possible homogeneous groups, some of which are listed

in Tables II.2 and 1I.4 at the end of Section 3. There are also inhomo-

geneous versions of all of those groups obtained as semidirect products of

the homogeneous group with a translation group on which the homogeneous

group acts. (See Section 3.)

In Section 4,'I'discuss the gravitational variables, g, 6 and T.
It is useful to poiﬁt out that for some groups, certain variables disappear
from the action. Thus, for 0(3,1,R5, SL(2,C), and their subgroups, the
soldering form, 6, is a set of orthonormal frame fields. In these bases,
the components of the metric, g = nuv’ are ;onstant. Heﬁce, the metric

Tuv

components cannot be varied im the action. Similarly, for GL(4,R) the
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soldering.form, 6, becomes arbitrary and its variation in the .action only
produces an identity. (In fact, there aré always the Noether identities

relating the variationsof g, ® and T. See Section III.5.) Furthermore,

for some of the inhomogeneous groups, the soldering form, 6, gets absorbed

inte the connection, T.
As in the discussion of a gauge theory, the source fields are de-

scribed by the cross section, ¥, of the bundle E. In a choice of space-

time gauge (say the a-gauge). the cross section, ¥, is described by a

: o ar -
vector field, ¥, whose components, wk, k=1,..., N, are the components of

all of the source fields. Under a change of the spacetime gauge the

‘components mix according to the representation, R, of the group, G:

k By
wg) 5V : (7

= (ra

Finally in Section 5, I study the aétion, S[w,g,G,T;A].- I first show
that special relativity may be regarde& as the global gauge theory of space-
time symmetries. . THen T éxpress the action as the integral of a Lagrangian
and decompose the Lagrangiaﬁ iﬁto a matter part, a gravitational part, and
an interaction part. The matter Lagraﬁgian may then be decomposed into a
source part, a gauge part, and another interaction part as in Section 1.
A discussion of minimal coﬁpling is postponed to Section TII.4. T mention
thg gravitational Laérangian which T consider to be most analogous to the
Yang~Mills Lagrangian but I postpone a detailed discussion of thé gravita-

tional Lagrangian to Chapter V.
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3. The Principal G—Buﬁdle: f
In this section I discuss the possible spacetime symmetry groups,
G, and the corresponding principal G-bundle, P. 1In the process I discuss
the representation, RT, the admissible tangent frames, and the various
tangent temsor bundles, TEM; When appropriate, I discuss the admissible
sﬁinor frames and the various spinor tensor bundles, TgiM.

Wheﬁ the group, G, is homogeneous, the principal G-bundle, P, is
usually realized as a frame bundle. As with a gauge theory, the class of
admissible frames must be restricted so that.the set of transformations
between admissible frames coincides with the group, 6.

First consider frames on the tanget bundle, TM. The set of all frames,

eu, at all points of M is the general linear frame bundle, GL{M), which is a
principal GL(4,R)-bundle. Using the metric, g, the set of all orthonormal

frames is the orthonormal frame bundie, 0(M,g), which is a principal

. * .
0(3,1,R)-bundle. Similarly, using only the conformal metric, g, one obtains

the bundle of conformal orthonormal frames, CO(M,g), which is a principal

bundle with group, CO(3,1,R) = the conformal orthogonal or conformal Lorentz

group. This bundle is particularl§ interesting since C0(3,1,R) is the
largest subgroup of GL(4,R) which has "spinor representations." Since
spinors are experimentally observed, I do not regard any subgroup of GL(4,R)
larger than C0t3,1,R) as being physically relevant. However, I continue to
consider such groups for completeness. |

There are many other possible tangent frame bundles; some of which are
listed in Table II.1 at the end of this section. Some of these are defined

%
using the metric, g. Others use only the conformal metric, g, or the volume

element, (The latter can be determined up to sign from the metric, g.)

'ﬂv-

Each of these tangent frame bundles, P, is a principal bundle for some group,
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G, which is a subgroup of GL(4,R). The appropriate groups are listed in
Table II.1 and defined in Table II.2. 1In considering a metric—connection

theory with spacetime gymmetry group, G < GL(4,R), the frames, eu, in the

corresponding tangent frame bundle, P, will be called the admissible tangenf

frames.

A choice of spacetime gauge is a choice of admissible frame field, & s

for the tangent bundle, TM; i.e. a local cross section of the bundlie, P.

o .
. . *
This induces a dual 1-form frame field, 6“, on the cotangent-bundle, T M,
: o _ o uvl qu
and induces a. frame field, eu 2...8 eu ® 8 "&...8 & » on each of
1 p : ' :

the tangent tensor bundles,.TgM. Under a change of admissible'frame field, |

a B -1y ' -
e-u = ev(AaB) Lo _ (1)

the components of a tangent vector,

O, O By B
e

X = X e, = X v € ™, , (2)

change according to
o B
T u By
X (AGB) v X . | (3

This defining representation of the group, G, denoted R;, is the
4~dimensional real representation, RT’ referred to in the definition of

a metric-connection theory. Thus,

Rehus = Rihog = A4p *)

wla

Similarly, under the frame transformation (1) a l1-form, A e T“M, trans-
forms according to the representation, Ri, while a tensor, B ¢ TEM )

%
transforms according to the representation, Rg. Hence, P, T™M, T M and

all of the TgM are associated G-bundles, These and other frame trans—
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formation properties appear in Table II.7, while the infinitesimal
versions appear in Table II1.10. (Note that Téble II.7 uses primed and
unprimed indices to denote the choice of frame rather than the gauge
labels, a and B.)

Vhat about spinors? If one wants to consider spinors, then a
subgroup, G, of GL(4,R) is no longer the correct spacetime symmetry
group because the double valued épinor "representations" are not really
representations, Rather, one must considerla spinor group, G, as the
spacetime symmetry group. For symplicity, I only consider 2—componentl
spinors, although a similar development could be done for 4-component
spinors.

The fundamental spinor bundle, ngM, is a 2-dimensional complex

vector bundle over spacetime, M, TIts dual bundle is the dual sgindr

-, . o
bundle, ngM = (TZgM) . Its conjugate bundle is the conjugate spinor

. bundle, ngM = ngM,, and its dual conjugate bundle is the dual con-

4 1 ) .
jugate spinor bundle, ngM = (ngM) . Taking temsor products of tensor

powers of these bundles yields the spinor temsor bundles,

GSy . (mO0y\ 2P Yo, 2q 00 .\ 2T 0%, 28

where p, q, ¥, and s are integral or half-integral.

(Note: If V is a finite dimensional complex vector space, then its

" :
duzl space, V , is the set of complex linear functions on V; its conjugate

= %
spece, V, is the set of complex anti-linear functions on V ; and its dual

conjugate space, V , is the set of complex anti-linear functions on V.
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There is a cancnical isomorphism, () : V- > ¥V : ¢ » » called conjugation,

- : *
defined by Y(a) = ¢(a) for all @ € V , where the last bar denotes complex

: - *  -%
conjugation. There is a similar conjugation, () : V = V . For bundles

" thase definitions apply to fibres.)

Just as the tangent bundle, TM, has a metric, g, the spinor bundle,

02 o , - " . .
T,OM, must have an antisymmetric spinor metric, €. This induces an
z

s . ==1 o -
inverse conjugate metric, (g) ~, on TooM' Tensor products of €, €

. . -1 %o . L= " 00 :
inverse metric, € 7, on TEOM, a conjugate metric, €, on TO,M, and an
: . z

% 1

’E’

and (E)_l provide induced metrics on the spinor temsor bundles, TgiM.
For ngM to be an acceptable choice for the fundamental spinor
budle (rather than just some arbitrary, 2-dimensional complex vector

bundle with an antisymmetric metric) there must exist an isomorphism,
00 ' '
. : -
c T%%M erm ™ | | (6)

from the Hermitiaﬁ rank 2 spinor bundle to the tangent bundle. Further,
the isomorphism, o, must be an isometry from the metric, $ ¢ @ €, to
the metric, g. (Here, S = %l determines the signature of the metric, 2,
in that the Minkowski metric is n = diag(s,-S$,-5,-S). Notice that the
tizelike convention, S = +1, makes 5 € @ £, into the correct induced
metric on TEZM and so is nicer for dealing with spinors.)

The metric, €, and the isomorphism, o, can be written out m&re

explicitly once bases have been specified.
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i ' A -
Let u, be a spinor basis for TigM at one point of M. Let v , uzx
2 -
-A . 1o . . 0o
and v be the dual basis on TooM’ the conjugate basis on TDLM, and the
3 C 2

dual conjugate basis on TziM. These induce the basis,
By B _ B _B
8.8 U, ®v ®.8viu:6.0u-087v ®...87v°5,
A A - A
41 P 1 T (7

- on TS:M. In particular, Uy @ uﬁ is the induced basis on T%1M However,
this basis is not Hermitian and so is not a basis for Tl’MHerm

4-real dimensional vector bundle. A suitable basis for T1 TMH is
3z Herm

(u0®ﬁa+ul®_ﬁi)//2", (uo®fli —ul®ﬁs)i/'/f,
(8)
(uo®;i+ui®;16)//§, (u ®u——u ®u—)//_

The isomorphism, o, is then used to define an induced basis for TM:

eo=0‘(uo®u6+ ul®u'i-)/'l/2—,
e; = c{ uo®ui+ u1®fla')/¥',:z s
- =\ E (9)
e, = U(luo ® up - iuy ® ua)( 2,
e3=c( u0®u6- ul®uj—_)/rf2_‘.
: %
" Letting 6" be the basis for T M dual to e the induced basis for
Ty is then
p
_ v, v .
e ®.Q8e ®6 "8.009, (10)
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Yotice that the real linear combinations of the basis (8) span

Q0

TilMHerm » while the complex linear combinations span all of T,,M
22

*

Similarly, the real linear combinations of the basis (9) span-TM, while
the complex linear combinations span the complexified tangent bundie,

C @ m. Further, the complex linear comblnatlons of the bases (10) span
the complex1fled tangent tensor bundles, C ® TgM

Consequently, the isomorphism (6) extends by linearity to an

isomorphism,
G : Tz‘iM > C @ T™. _ (11)
. z

As a map between vector bundles, this isomorphism may be regarded as a

tensor and expanded in the induced bases:

cr=eu®or“AEvA®vA. ' ' (12)

Using (%), one finds that the components of ¢ in the induced bases are

just the Pauli matrices:

1 0 0 -1

00 _ 1 02 _ .1
AA /2 0 1 AA V2 [ 1 0
(13)
2 [en 5 a1
S, S R Ao
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The isomorphism (11) may be inverted,
1 00
o7 i COTM > TN, (14)

and then restricted to the real subspace,

ol me nguﬂem . ' (15)
From (9);

e = (@, ® &= +u, ®3)/V7,

oTHe) = @ ® i+ ® Ga)/ﬁ .

T He,) = (u, ® 57 - u, ® FIL/VZ , e

0 eg) = (u ® - 8/,

which is the basis (8) for ngmﬁerm' As a tensor, ¢ T may be expanded

in-fhe induced bases:

-1 _ Mg (o~ly AR o= a7
o @ () Ty ey .

Using (16), one finds that the components of 0-1 in the induced bases are

- V- « Y
1,48 1]+ 0 ~10a8 110 1%
@ == , @, e ;
2 {0 1 2 -1 0 |
(18)
-1, 45 1] 91 -1, Ak 1110
(o )l = —= » (o )3 = —=
2 {1 0 V2 | 0 -1 |

Notice that (o_l) AA

9 is #ot the Pauli matrix!

The same tensors, ¢ in (12) and 0_1 in (17), provide iéomorphisms

for the complexified cotangent bundle,

B g; 11 .
o : C®TM~> T°°M , (19)
: 00 ) .
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- 11 % '
ot TzzM +C®TM, . (20)

which may be restricted to the real subspaces,

3 13
. ¥
g : TM—>T00 erm ’ | . (21)
. -1 . ,;_% ‘ R Lo )
g 3 TooMﬁerm - TM. _ (22)

. Taking tensor products of tensor powers of ¢ and o"l, yields isomorphisms

for the complexified tangent tensor bundles,

2p ~1.2q qq 2q ) '
g & (o t: T""M>CQ@T. "M ., 23
(o ™) ppil 2p (23)

-1.2
(o l) P ! 1 C® ngM = ngM R ' (24)

which may again be restticted to the real subspaces,

2p -1.2q . 244 2q.,

o] ® (o ) : 'I'PP o -+ T2PM s (25)
-1.2p 29 | .2q qq

(c VT Qg : szM > TPP - . _ - (28)

The spinor metriec, e, its inverse, € ~, its conjugate, €, and its

inverse édnjugate, (E)_l, may also be expanded in the bases U, VA, ug

and GA

€= eV @ v s e =g uAGJuB,

_ - __ 27
= _ ___TA_ =B , -.-1 _ AB - -
€ =Eexg V & v (e) = g uy & ug -

That € — is the inverse of & and (E)—l is the inverse of E, mean that

_ : __ CB _ C
€4p € = GA ) €35 € 5A . 28
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That € is the conjugate of ¢ and (E)"1 is the conjugate of e“l, mean that

s = T, MBIl (29)

where the bar denotes complex conjugation.

AB AB . '
The tensors ¢ €, €=z and £ may be used to raise and lower

AB’ AB

spinor indices. WHowever, since they are antisymmetric, a convention must

be established. By convention, e'maps a spinor, Y = ¢A u, € TiZM, into
2

, 1 - .
the dual spinor, ¥ = wB VB € T;gM, while € maps a conjugate spinor,

—_ - 1
X = XA uy o TEZM, into the dual conjugate spinor, x = Xﬁ vB £ ngM, where

by = Ve Xz = X ezp | (30)

C CB . C CB
X =€ wB, X = e Xg . . (31)

Since equation (28) implies

CA DB _ CD CA DE __ _ D (32)
£ £ AR £ s N, €18 £ ’

these conventions (for inverse metrics and for raising and lowering indices)

. . . C D . . .
.are consistent with saying that ¢ D and ep are just e,, and €58 with their

AB

indices raised.
A spinor frame, Uy is called orthonormal if in that frame the com=-

ponents of the spinor metric, £, are

€A.B = Eo ’ , (33)

where I use the symbol, €., to denote the fixed matrix,

Qoo (34)
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Equations (28) and (29) then imply that for an orthonormal frame,
€ = g-= =g = g4 . (35)

"On the other hand, since € must be antisymmetric, its components in a

general spinor frame, u

5> are

EVAB = ¢ £o » ' . (36)
‘for some coﬁplex function, ¢, called.the spinor conformal factor. Then

ecuations (28) and (29) imply

AP, emm Fe, . =BT, (37

I use .a general spinor frame except when I explicitljrsay it is orthonormal.
The requirement that the isomorphisﬁ, ¢ in (6), is an isometry from

the metric, S € ® ¢ , to the metric, g, implies that for all X, Y ¢ Tizm,
. 2
(s e®e)(X, ¥) = g(oX, o¥). (38)

In indices this says

A _BB W _AA v _BE (39)
s — XAA = - XAA -
. €5 IR Y guv o 7 O g7 Yoo,

This must be true for all X and Y. Thus
0 .= (40)

or

AT = (41)
) -1, AA -1, BB
- 5 EAB EEE (o )U (¢ )u .

{a
]
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First notice that the equation (41) can be solved for the components

of ¢ = in terms of the compbnents of o:
(o hy Mo s ABAE Y g A (42)

. B : _1 - . .
Thus, except for the factor of 5 , the components of ¢ = are just the

components of ¢ with its indices raised and lowered using g, € and c.

(Again notice that the timelike convention, 5 = 41, is simpler for

manipulating spinors.)
Second notice that equation (41) may be rewritten as the trace of a

product of spinor matrices:

-1, AA -1 BB
guv =- ¢ e:BA (o )u EEE (o )u
. _ - 1T
=~ sl H F @, (43)

Explicitly computing the 10 independent components of guv’ using equations

(18), (36) and (37), one finds
- 2 _ 2z ., s s '
By = 1817y = 1] diag(s, -8, -, -9, (44)

A

2
always conformal orthomormal, and the vector conformal factor is ]¢| , the

Thus for an arbitrary spinor frame, u,, the induced vector frame, eu, is

square of the absolute value of the spinor conformal factor. Further since
the spinor frame, u,, can be continuously rotated into any other spinor

frame, u}

L the induced vector frames, eu and eL, have the same orientation

and time orientation. By convention, these orientations are chosen as the
standard ones. ' :

Also notice from equation (44), that if u, is orthonormal (¢=1), then

A

eu is also orthonormal. In fact, even if ¢ is a pure phase (|¢1=1), then

is a general spinor frame,

e, is crthoncrmal. On the other hand, if u,

then the vector metric, guv’ determineg the spinor metriec, €

ape UP tO 2
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phase factor. (This phase factor can be used to incorporate electro-

megnetism into the theory of gravity as discussed below.)

-

This brings us back to the problem of classifying spinor frame

" bundles. The set of all spinor frames, uA,—at all points of M is the

general linear spinor frame bundle, GL in(M)_, which is a principal

Sp

GL(Z,C)?bﬁndle. The set of all orthonormal spinor frames is tﬁe

orthonormal spinor frame bundle, SL in(M), which is a principal

Sp

" SL(2,C)-bundle. Between these extremes there are several other spinor

frame bundles, P, listed in Table ITI.3. Each of these is a principal
bundle for some group, G « GL(2,C). The appropriate groups are listed in
Table II.3 and defined in Table II.4.

As discussed above, each spinor frame, u induceés an oriented, time

A

oriented, conformal orthonormal, tangent frame, ep, on the tangent bundle,

T¥, according to equation (9). This defines a map

Ry : GLSPiI-_l(M) N cgo ). (45)

Under this map, each spinor frame bundle, P = GL in(M), has an image,

Sp
RT(P}~=COO(M), which is a tangent frame bundle, and hence is a principle

bundle for a group, RT(G) = CO°(3,1,R)é which forms a representation, RT’
of the group, G = GL(Z,Cj.V The bundle RT(P)and group RT(G) are listed in
Téble 1.3 and defined in Tables II.1 and II.2. The representation, RT’
is discussed in more detail below.

, . . : o,
A choice of spacetime gauge is now a local cress section, u,, of the

A
szinor frame bundle, P, or equivalently, a local frame field on the

. . (os) . . ; .
fundamental spinor bundle, TLOM. This induces a local cross section, %U’
2

o7 the tangent frame bundle, RT(P),or equivalently, a local frame field on
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the tangent bundle, TM. A change of spacetime gauge is a change of spinor

frame field,

o _ B [,~1.B
where UuB belongs to the spinor group, G « GL(2,C). This induces a

change in the vector frame field,
g =8 7ty (47)

where AaB= RT(UGB) belongs to.the tangent representation, RT(G) e C0.{(3,1,R)..
Under the spinor frame transformation (46), a spinor,

b= %A gA = 33 EB’ transforms according to

ap A B | :
au s} B\) B : .
and a tangent vector, X = X eu =X e, transforms according to
o ] :
= L2 . ‘ .
X = [AaB]'v X . | _ (49)

Similar transformations are induced on all of the spinor tensor bundles,
gs i} gs,, .

jprM, and the tangen; tensor bundles,'TPM. Thus, P, RT(P), TprM’ and

TEM are all associated G-bundles. These and other transformation pro-

. perties under a change of spinor frame, appear in Table II.8, while the
infinitesimal versions appear in Table II.1ll. (Note that Table II.8 uses
primed and unprimed indices to denote the choice of frame rather than the
gauge labels,o and B.)

How is the matrlx, Aa8= RT(UGB)’ related to UaB; i.e. what is'the

representation, RT? From equations (17) and (46),

~l,0 . -1 Ahg 2%
c (eu) = {g )U u, @ uz
- B - _'
_, ~l, AR B ks -1.B  .—1.B
= (g )]J u, @ ug [UaBI A,[ | R _ (50)
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On the other hand, from equations (47) and (17),

-1, =1,8. . -1.v
o (eu) = g fev) [AGB] I
- B B .
~1. BB - -1.v
= (o )v ug @ ug [AGB] i | (51)

Equating coefficients leads to

[A;é}vu =‘GvB§ (O—l)uAE [ﬁ;E}BA [ﬁgélgﬁ ’_ . 2

ogl¥y = g G w4 [ﬁugl‘% : (53)
Equation (53) defines the representation;

Rp * GL(2,0) > 000(3,1,§), : ' (54)

which may be restricted to any group, G < GL(2,C). Table II.4 defines

several such subgroups, G, lists the image, RT(G), and also the kernel of

the restriction, RT!G; i.e. the set of all U e G such that RT(U) =] ¢ RT(G).

Several spinor groups deserve special attention. The restriction of

RT to SL(2,C),
Rp i SL(2,0) + 0.(3,1,R), (55)

is the usﬁél 2-1 representation of SL(2,C) onto the restricted Lorentz
group. It is 2-1 because its kernel, {1,-1} e SL(2,C), has 2 elements.
SL(2,C) is an appropriate spacetime symmetry gfoup for discussing spinors
in a metric—connecﬁion thepry with a Cartan connection.
Similarly, the 2-1 covering of the restricted conformal Lorentz group

is

Ry ¢ CL(2,0) 0 (3,1,R) , - (56)
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where CL(2,C) is the subgroup of GL(2,C) for which the determinant is
real and positive. CL(2,C) is the spacetime symmetry group for the spinor

frame bﬁndle, CL _n(M), which requires the spinor conformal factor, ¢,

Spi
to be real and positive. It is an appropriate group for discussing

spinors in a theory with a Weyl-Cartan connection.

If one were to consider a theory in which spiners are coupled to

- both an electromagnetic potential and a Cartan connection, one would

usually consider the group, SL(2,C) x U(l). However, one could instead
use the group, PL(2,C), which is the subgroup of GL(2,C) for which the
determinant is a pure phase. These groups have the same Lie algebra and
so require the same connection fields. However, their multiplet structure
could differ because ;hey are related by a 2-1 homomorphism,

e.

SL(2,C) % U(l) - PL(2,C) : (U,e 0y + etou. (57) -

-

The spacetime symmetry group, PL(Z,C), corresponds to the spinor frame

bundle, PL in(M), for which the spinor conformal factor, ¢, is a pure

Sp

phase (|¢]=l). The kernel of the tangent representation,

Ry ¢ PL(2,0) » 0,(3,1,R), . (58)

is now U(1) =VSl = {eie 1 }. Thus in addition to gauging the Lorentz
group, the group, PL{2,C), also gauges the phasé factors of the spiﬁor
wave functions. I believe this is in fact what is usually done.

Similarly, one-could go all the way and use tﬁe full spiﬁor group,
GL(2,C), to describe spinors in a Weyl-Cartan theory with eléctrogagnetism.

At the beginning of this section, I said that the principal bundle, P,
is usually tzken as a frame bundle, and then I proceeded té discuss the
tangent and spinor frame bundlés. I now'briefly mention two generalizations

in which P is not simply a frame bundle.
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Firs£, recall that for any matrix U e GL{2,C), its tangenL re-
presentation, A.z RT(U), as defined by equation (53), must belong to
thé restricted cqnformai orthogonal group, C0,(3,1,R). Thus none of the
‘groups, G = GL(2,C), appropriate to the spinor frame bundles in Table II.3,
can ﬁe used toAdescribe time reversal, T, épace reversal, P, or space-
time re&efsal, PT = —l; of the vector frames.. One way to include one or
all of these discrete operatioms is to extend the group5 G, to
‘the direct ﬁroduct of G with.one of the finite g?oups,.{l, T}; {1 P31,
{1, -1}, or {l, —l,.T, P}. fhis is done in Table II.4. A principal
bundle for the extended spinor group can then be constructed by taking
the union of 2 or 4 copies of theloriginal principal bundle for the
uﬁextgn@ed group.:

.Second,lall of the spacetime symmet?y groups discussed so far (those
in Tables TII.2 and IIL.4) have been homogeneous groups, However, as pointed
out in Section 2, there are also inhomogeneocus groups. For each homo-
geneous group (now called H) there is an inhomogeneous group, G, which is
the semi-direct product of H with the 4-dimensional real translation group,
T{(4,R), where the semi-direct product is implemented By the representation,
RT; of H acting on T(4,R) = Ré. Thus

G=H XRT

with the product rule

T(4,R) = {(A,a) : AeH, a & T{(4,R)}, . (59)

(A,a) o (M,b) = (&M, (RTA)b + a). (60)
The representation, RT, is then extended to G by ignoring the translations:

RT(A_,a) = R.A (61)
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Given the principal H-bundle, ¢, a prinéipal G-bundle, P, can be con-

structed as the intrinsic Cartesian product,
P=Qx TM. ' : (62)

(By an intrinsic Cartesian product I mean that each fibre of P is the

Cartesian product of the corresponding fibres of Q and TM.) The bundle,

P, is called the affine version of the bundle, Q. (See Kobayashi and

Nomizu [1963 ] pp. 125-130 for a more detailed discussion of affine frame
bundles.)

For each of the tangent groups, H, listed in Table 1I.2, the inho~
mogeneous version, G, is denoted by prefixing an "I" to the symbol for H
and the word "inhomogeneous" to its name. Correspondingly, for each of
the tangent frame bundie55 0, listed in Table II.1, the affine version,
P, is denoted by prefixing an "A" to the symbol and appending "affine" to

the mame. Thus, for example, the oriented, time oriented, conformal

Vorthbgonal, affine, tangent frame bundle,

ACO, (M, 8) = CO,(M,8) x TM, (63)

~is a principal bundle for the inhomogeneous, restricted, conformal ortho-

gonal group,
IC0,(3,1,R} = C0.(3,1,R) *p T(4,R). (64)
) T
. On the other hand, the affine spinor group, G, obtained (by the

semidirect product with T(4,R) via RT) from a spinor group, H, listed in

Table I1.4, is denoted by prefixing an "A" to the symbol and "affine" to

the name. The corresponding affine spinor frame bundle is also denoted

™

by prefixing "A" to the symbol and "affine" to the name. Thus, for example,

the orthonormal, affine, spinor frame bundle,

ASLSpin(M) = SLSpin(M) x ™ , _ . (65)
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ié a principal bundle for the affine, special linear group,

I emphasize that the affine spinor groups are denoted with "A" and "affine"
rather than "I" and "inhomogeneous." The latter would refer to the semi-

direct product,

]
]

H st T(2,C) , : (67)

of H with the 2-dimensional complex translation group, T(2,C), via the
defining spinor represeantation, RS. The corresponding principal bundle

is the intrinsic Cartesian product,
' 0o,, :
= X M .
P = Qx ToM, - | (68)

which would be denoted by prefixing an "I" to the symbol for Q and
"inhomogeneous" to its name. Thus, for example, the orthonormal, inho-
mogeneous, spinor frame bundie,

_ 00 _ . ’
ISLg ;M) = SLy . (D) Ty, (69)

is a principal bundle for the inhomogeneous, special linear group,
ISL(2,C) = SL(2,C) Xp T(2,G).
S

I-conclude this section by commenting that there are probably many

other ways to construct spacetime symmetry groups and their principal

bundles whichlI have not included here.
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4. The Gravitational Variables: g; 6, T
In this section, I argue for using the metric, g, the soldering
form, G, and.the connection, T, as the gravitational vafiables in a metric-
connection theory. The argument is by analogy with the variables chosen
in a gauge theory.

Recall that the following G-bundles are all required to be associated:

P = the principal G-bundle

E = the source field bundle,

™ = the tangent bundle,

RT(P) = the admissible tangent frame bundle,

T*M = the cotangent bundle,

R;(P) = the admissible cotangent frame bundle

TgM = the tangent tensor bundles, and

Rg(P) = the admissible frame bundle -for TgH; | -
Further, if G is a spinor group, the spinor bundles ( ngM, TigM, ngM,

1 .
: ngM, and TgiM ) and the corresponding admissible spinor frame bundles

* - —% -
( RS(P), RS(P), RS(P), RS(P), and Rg:(P) ) are also associated. To say
that these bundles are associated, means that each bundle may be regarded
as a G-bundle in such a way that they all have the same set of spacetime

gauge patches, Ua’c M, and the same set of overlap gaugé transformations,
{ : ' . ? '
‘a8 Uu q UB + G : 1)

A choice of gauge for any of these bundles is specified by a local

cfoss section of the principal G-bundle, P:

3o Ua -+ P. (2)

' This induces local cross sections of all of the frame bundles:




~
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o
g P U > RL(B), 8 :Ua-a-R,:_(P),
(3)
. *
g U, + Rg(P), g . U, > R (B),

etc. Each of these specifies the gauge on the corresponding vectbr bundlie
énd all of the tensor bundles formed from that bundle. Thus, g or g
specifies the gauge on all of the TgM.including ™ and T*M, while § or %
specifies the gauge on all of theiTgiM including all of the TgM.

For each choice of spacetime gauge (say the a-gauge), the spacetime

connection, T, determines a £G-valued 1-form,

T 0 + LG, | %)

where £G is the Lie algebra of G. On the overlap of two patches, Uu [} UB’

the connection l-forms are related by

B 1 -1 o ,
FAg+ A dio). (5)

$ -
- AaB aB

. The spacetime connection, I', is completely analogous to the gauge connec-

tion, A, and so it is reasonable to regard I' as one of the gravitational
potentials.

The property of the metric-conmection theories which distinguishes
them from the gauge theories is the fact that the frame bundle, RT(P), is
contained in the ggneral linear frame bundle, GL(M). Just how RT(P) sits
within GL(M) is specified by the soidering form 8. For each'choice of
spacetime gauge (say the a-gauge), the soldering form, 6, becomes the
corresponding l-form frame field, |

.
5

* _ :
: Ua - RT(P) . : | (6)

On the overlap of two patches, Ua 1 U,, the soldering l-forms are

B




VO

~,

Ry

‘Further, R =;CT(4,R) is the Lie algebra of the 4~dimensional real trans- . |

86
rélated by
%u=(RTA M g"_. | | = )
_ As‘a collection of four l—forms,-ea may also be regarded as an Ré-

valued 1-form,

a . 4 ' :
e TUa +R" . . (8)
4

lation group, T(4,R). Thus, for each choice of spacetime gauge, the

soldering form, 8, determines a:ﬁT(4,R) - valued 1~form;
a
6 : TU +LT(4,R). | (9)

This is analogous to equation (4) for the spacetime conmection I', and to

. the corresponding equation for the gguge connection, A. However, 8 differs

from T and A because its transformation rule (7) is homogeneous whereas
the transformation rule (5) for I has an inhomogeneous second term. Further,
the transformation rule (7) involves the group, G, rather than the group,
T(4,R). |

To improve the analogy between 6 and T or A, let me first give a
heuristic argument fbr regarding 0 as the gauge potential for the trans-
lation group (or the coordinate transformation group or the difféomorphism
group). 1In constructing a covariant derivative one usually includes a
compensating field for eaéh generator pf the gauge group. To include trans-~
lations as well as rotations and gauge transformations, one might define

the covariant derivative to be

_ Y yé _
va~3a+1u?Y+ruJY6+AaTP, {(10)
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where PY’ Jyé and TP are the generators of translations, rotations and
'

P .
gauge transformations; and Aya, T o and A o are the corresponding com-
pensating fields. Recall however, that the generator of translations

is PY = BY' Consequently, the first two terms of (10) combine into

_ oY Y
e, = (& o 4+ X G)BY R (11)

* which may be taken as an orthonormal frame. Thus, although one started

_out trying to define a covariant derivative in a coordinate direction, one

ends up with a covariant derivative in an orthonormal direction. Although,
AYa is actually the compensating field, it transforms highly non-covariantly
under both coordinate and frame transformations. Consequently, it is easier

to use the tetrad components,

e =468 4+ A . (12)

o o . '
or their inverses, § a® as the potential for the translation group.

' The analogy between 8, T and A will be improved once I have discussed
the properties of the connection, I', for varfous groups, G.
Recall (from Appendix B) that in a gauge, o, the covariant derivative

of a field, ¢, in a direction, X, is

vt = x@ + mreott; WP 13)

oA - [57:1
Here, § are the components of { in the g-gauge and VX¢ are the components of

VXw in the a-gauge. These transform under a representation, R, of the group,
o

a
G. Further, X(wA) igs the directional derivative of wA in the direction, X,
a
and finally, [RI"(X)]AB are the matrix components of the representation,
. a )
R, of the Lie algebra element, I'(X), obtained when the connection 1-form

o
in the a-gauge, ', is evaluated on the tangent vector, X.



On the other hand, if Y is chosen as the admissible basis vector, ev,
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- a'v
For a tangent vector field, Y, its components in the a—gauge, Yu,

. o
are its components relative to the admissible frame field, eu. These trans-

form under the representation RT' Thus the covariant derivative of Y

in the directiom X is

C!u _ G"l-l ) o u Oy '
VY= XEY + IR, TN Y L . @A)

1 emphasize that the differentiated vector, Y, must be éxpandéd in an

. , " .
‘admissible basis, eu, whereas the differentiating vector, X, may be ex~

panded in an arbitrary basis. When X and Y are both chosen as admissible

basis vectors, one obtains the definition of the frame components of the

connection:

ST o ou o o u o
Tam Gge) = [Rfepl’, . (15)
' A
o

whereas X is chosen as a coordinate basis wvector, aa, one obtains the

definition of the mixed components of the connection:

S _ @ u_ o 2 u . ]
. = (Vaaev) = [Rra 1 . (16)

These are related by

T w=e T va . an

For any spacetime symmetry group, G, its tangent representation,
RT(G), is a subgroup of GL(A,R), and the tangent representation of its Lie
algebra, RTC£G), is a sub~-Lie élgebra of JGL(4,R) = M(4,R) = the set of
4 x 4 real matrices. (The relevanf sub-Lie algebras of J&GL(4,R) are

listed in Table II.5.)
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In particular, if RT(G) < 0(3,1,R), then the admissiblé frames are
orthonormal, so that the frame.components of tﬁe metric are the constant
Minkowski ﬁetric, guv = nuv. further, RTGEG) e L0(3,1,R) consists of
antisymmetric'matrices when the index is lowered using nuv; i.e. if

M“v e £0(3,1,R), then

' . A A
1-1w + Mvu = nul M N + LY M w s C. (18)

Consequently, the covariant derivative of the metric vanishes,

g a o O:-A o . (X.;\ 47
aBuv aaguv =T na Sxv T va B
o o
= - Tvua - Tuva = (, (19)

so that T is a Cartan connectiomn.

Conversely, if the covariant derivative of the metrric vanishes, then

R by restricting to orthonormal frames, one reduces the tangent bundle to

an 0(3,1,R) - bundle and reduces the connection to an 0(3,1,R) ~ connection.
Similarly, if RT(G) < C0(3,1,R), then the admissible frames are con-
formal orthonormal, the frame components of the metric are conformally
o o -
Minkowski, g = @n . and if M“v e R, (6) =LCO(3,1,R), then M“v has

no trace free symmetric part when the index is lowered using any confor=

mally Minkowski metric:

A Ao 1. '
M v + ank M= 3 M N an . _ (20)

M +M =in
. uv

Wy Vi pA

o
(Here, & may or may not equal .) Consequently, the covariant derivative

of the metric is proportional to the metrie,
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. o L ™ g
VB = 8,8 nuv) T e Y T T va Y
a o ) oy -
-1 1 %X a
= : -2 7
« aa'Q 2 Aa)guv
__1§ ¢ ' - |

so that T is a WéylECartan connection. Convefsely, for a Weyl-Cartan
‘connection, restricting to conformal Ortﬁonormal'frames reduces the tangent
" bundle to a €0(3,1,R) - bundle and ;edﬁces the connection to a co0(3,1,R) -
connection.

Similérly again, if RT(G) < VL(4,R), then the admissible frames are
.unit volume, the determinant of the frame components of the metric is
g = #i,.and ény MPv £ RTCSG) e LVL(4,R) is trace—free,-Mhh= 0. Consequently,

the covariant derivative of the metric is trace~free,

BV e, = o E-2T, =0 (22)
(This equation might be called the anti-Weyl-—compatibility condition.)
Conversely, if the covariant derivative of.the metrié.is trace—-free, then
réstricting to unit volume frames reduces the tangent buﬁdle to a VL(4,R) -
bundle and reduces the connection to a VL{4,R} - connection.

Finally, if RT(G) = GL(Q,R), then any frame is admissible, the frame
components of the metric are arbitrary, the Lie algebra, RTC£G), is all of
SGL(4,R) = M{(4,R), the cbva;iant derivative of the metric is unrestricted,
and the connegtion is completely general.

If the spacetime symmetry group, G, also has a spinor representation,
RS(G) < GL{(2,C), then the commection can also be classified by the value

o

cf the covariant derivative of the spinor metric, vaeAB' Relative to an
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o
admissible spinor frame u,, the components of the spinor connection are

defined as

QA o A o A
e, = (VBaUB) = [Rsr(aa)] - | (23)
G . : o
Since_VaEAB is antisymmetric in A and B, it must be proportional to EAB:
v ) e o -
afap = X, €45 o _ (24)
(X.A o4
If RSC£G} < £L5L(2,C), then T Aa = 0 and Xa = 0. If RSG£G) < LCL(2,C),
<IN & 19 g
then T As and ka = = Z—Aa are pure real where Aa is the Weyl-potential of
o o o
equation (21). If RS(£G) e £PL(2,C), then PAAa =2 i Aa and Xa are pure

o
imaginary where A.a may be identified as an electromagnetic potential.

o
Finally, 1f R (£6) = LOL(2,C), then I

Aa and Xa are complex.

The above clasgsification of T' by the values of Vg or Ve completely
characterizes I' for each of the sﬁacetime symmetrj groups, G, listed in
- Tables II.2 and II.4. These are all homogeneous groups. 'What about the
_inhomogeneous versions of these groups?

Recall that an inhomogeneocus tangent group is the semi—direqt product

G=Hx_ T(,R), ’ 25)

Ry

where H is the corresponding homogeneous tangent group, T(4,R) is the
4—dimensional real translation group, RT is the defining representation of

H acting on T(4,R) =_R4, and the product is defined by
(A,a) o (M,b) = (M, Ab + a). - (26)
The Lie algebra of G is the semi-direct sum

Lo = LB+, LT(4,R), | (27)
T
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where the sum is componentwise,

(1,8) + (p,e) = (}\'h-la S+e), o (28)

and the Lie bracket is defined by
I (L8) 5 Gue) T= ([rul, e - p8). - 29)

There is a 5-dimensional faithful representatibn,of G and £G in

. : A a
which (A,a) & G is represented by the block matrix, { 01 ],_and (A ye) £ L6

Ao » ‘ : 7 :
is represented by [ 0 o } - Notice that for group elements the matrix
product coinsides with (26), while for Lie algebra elements the matrix sum
coincides with (28) and the matrix commutator coincides with (29). Further,
the matrix exponential of a Lie algebra element is a group element. From
now on I identify this representation with G and £G. For future use notice
that the inverse of a group element is
| -1 -1 -1 -
A A - A :
a = a . : (30)
01 0 1

Recall from Section 3 that the principal bundle for the inhomogeneous

tangent group, G, is the affine tangent frame bundle
P=QxTM |, | (31)

where Q is the corresponding tangent frame bundle for the homogeneous
tangent group, H. A choice of gauge is now a local cross section of P;

. . 0 G
i.e. 2 local affine tangent frame field, (e , o), where

o '
e : Ua + Q, | (32)
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is an admissible tangent frame field and
§:U +TU _ (33)
o =" o’ A

is a vector field regarded as a new origin for TM. Two affine frame

fields are related by the overlap gauge transformations,
A
A = _ : Ud N UB >~ G (34)

according to-

o Oy _ -1
€, H=E, g

_8 e [l

= (&, 0) Aaﬁ AaB 248

0 1
-1 -1 :
= (E AGB . E - & AGB aas)" (35)
- In other words '

o g8 . —L.v
u ev(AaB) u’ (36)
S8 _B ahy @ M (37)

In the w-gauge any tangent vector, X € TUa’ may be.specified by its
o

affine components, Xy,determined from
(38)

Using (36) and (37), one finds that under the gauge transformation (34),

the affine components of X undergo the affine transformation,

Sy u By TR ' '
{ (AuB) v X -+ (aaB) . (39)
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Tﬂus TM may be regarded as a G-bundle éssociated to P. (Note: With
affine components, TM is no{: a G-vector bundle and so it is not possible
to define a G-covariant derivative. However, it is still possible to
‘define a G~connection.)

In the a-gauge, the G—connectioﬁ,_ I, determines an fG-valued 1-form,

L) v

a r v .

T = : TU +<LG, A (40)
o 0 o E _ i

where

a : '

T : TUa-+£H, : . _ (41)

& 4

Y : TC, +<£LT(4,R) = R, ) (42)

Under the gauge transformation (34), the comnection l-forms transform

. according to

a_, 8- .A' At
=~ —uf — —ub + “uf d(—u8)° (43)

Using (40), (34), and (30) one finds

¥ Falien a7t '
~ TaB af af ( aB)’ ' (44)
g & anta )'-%A“la ] . (45)
of af aB af af L

If one restricts attention to affine fra;me fields, (g . g), for which
the origin vector field, g' in t33), is the zero cross section of TM, then
the restricted class of gauge transformations {34) have 4 = 0. This
reduces TM from a G-bundle to an H-vector bundle. However, as long as 3
15 ncn-zere, the G-connection, _%_, is not reducible. Rather, it decomposes

o
into the E-comnection, T in (41), which transforms according to (44), and

A [+ 3 .
the R -valued 1-form, y in (42), which transforms according to




~
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a By .
Yu = (Aas)uu Yv . , : (46)

when oﬂe setsg a,5 = 0 in (45). Notice that the collection of 1-forms, v,
behaves exactly like the soldering form, 8. (Compare equation (42) with
(9) and equation (46) with (7).) Thus it is reasonable and possible to
identify v with &, although it is not'necessary.

A G-connection, [, is called an affine tangent connection if

o o o
Tua = Bua whenever the origin vector field, o, vanishes. On the other

hand, a G~connection, I, is called a generalized affine tangent conmection

o o '
if v is unrelated to 6. In this context the H-conmection, T', is called

a linear tangent commection. (Thus the name "affine connection" when
épplied to the usual connection on the tangent bundle ig a misnomer.) See
Kobayaéhi and Nomizu [1963] ch. III for a more detailed discussion of
linear connectipns, affine connections, and generalized affine connections.
It is obvious that a similar construction can be done which unifies

the soldering form, 6, with a linear spinor connection, I'; for a homo-

geneous spinor group, H, into an affine spinor comnectiom, I, for an

Ry

affine tangent connection or a generalized affine spinor comnection, but I

affine spinor, G = H x T(4,R). One might also investigate a generalized

do not understand the physical significance of the additional affine com—
ponents, Y, in the connection. Nor do I understand the significance of the

extra components of a connection for an inhomogeneous spinor group,

G

H XR T(2,C).
S

This completes my justification for using the soldering form,; 6, as
a gravitational variable in a metric-connection theory. To summarize, tﬁe
soldering form, &, and the.linear connection, I', may be unified into an
affine connection, T, which is analogous to the gauge connection, A, in a
gauge theory. Hoﬁever, in practice, the affine notation is cumbersome and

unfamiliar. So I use 6 apnd T as separate variables ¥ather than T.




o

96

What about the metrie, guv? The spacetime metric is analogous to the
inner product, ¢jk’ introduced in the discussion of gauge theories in

: a : .
Section 1. In the gauge theory case, ¢jk was used to define certain choices

of gauge (by choosing an orthonormal frame field) or even to defime the

gauge group (by restricting to only orthonormal frames). Similarly, in

o

Section 3, the frame components of the metric, » were often used to

guv

define the admissible frame fields and the principal G-bundle, P.

In the_gauge theory case, ¢jk waS'usedrto cpnstruct a scalar Lagrangian.
Likewise guv is used to construct a-scalar Laggaggian., There.are two
differences. First, differentiations are performed in spacetime directioms,
not "‘gauge directioﬁs." All derivative indices aré’convefted to admissible
frame-indices by contracting with the frame componeﬁié; eua. Then all other

contractions are performed using the frame components of the metric, guv'

- Becond, in varying the Lagrangian, L, one actually varies the Lagrangian

density
£ =V§L=7-F 0oL (47)

Thus, in varying guv one must aléo vary ¢:§', and in varying eua one must
also vafy‘e .

-In the gauge théory case, one most often.restricts attention to groups
and representations which have invariant inngr products. In thaé‘case, ¢jk
is consgtant in position and independent of gauge, and so cannot be varied.
Similarly, for the Lorenté group, 0(3,1,R), and its subgroups, the admissible
frames are orthonormal and the frame components of the metric are the com-

v

ocnents of the Minkowski metric, guv =7 . Since the Minkowski metric is

ccastant and Lorentz invariant, it also cannot be varied in the Lagrangian.
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Hdwever, for the group, GL(4,R), there is no invariantlmetric on the
tangent bundle. Instead, one introduces the frame components of the
metric,-guv,-as additional dynémic variables. This induces metrics on all
of the tangent tensor bundles, including the bundle, TiM, whose fibre is
LGL(4,R). (Note: one does not have to use the standard induced metric.)

In Sectidn 5, T discuss the kinetic Lagrangian for guv (as well as Sua

and Puva)and point out that I regard the Lagrangian (II.5.19) as most

analogous to a Yang-Mills Lagrangian.

Like_¢jk, the spacetime metric, guv’ beﬁaves much like a Goldstone-Higgs
field. By restricting to orthonormal frames, one reduces the tangent tensor
bundles from GL(4,R) - bundles to 0(3,1,R) - bundles. However, as long as
vaguﬁ # 0, the GL(4,R) - connection does not reduce. Rather, it decomposeé

into an 0(3,1,R) ~ connection and 10 residual 1-form fields. The symmetry

is broken. For Lagrangian {I1.5.19), except for special values of the .

- coupling constants, the 10 residual 1-form fields become massive and absorb

_the 10 components of guv as their longitudinal components.

What zbout the spacetime symmetry groups other than GL(4,R) and 0(3,1,R)?

For CO(3,1,R), the admissible frames are conformal orthonormal, guv =an .,

uv
1 u -1 .
v = .= - _ . '
and‘aguv 2 Aa B> where Aa r ua 20 339 In varying the metric,
one can only vary the conformal factor, 2. Upon restricting to orthonormal

frames, so that Q@ = 1, the symmetry is broken down to 0(3,1,R) and the

u

residual 1-form field is A =T
- a Ha

. If one uses Lagrangian (II.5.19), then
theV g  terms become a mass term for X .
a uv a

Similarly, for VL{4,R)} or SL(4,R) the metric has unit determihant,

g = -1, and its covariant derivative is trace-~free, guv vaguu = 0. One must

-vary the metric subject to the constraint, § = -1, Upbn restricting to

orthonormal frames, the symmetry is again reduced to 0(3,1,R) and there are



98

9 residval l-form fields which are the independent components of vaguv’

For the spinor groups, one should technically use the spinor metric,

£

AR’ 28 the dynamic field rather than gﬁv' This is analogous to the gauge

theory recommendation that the dymamic metrics should be the metrics on the

fundamental representations. However, for SL(2,C), the spinor metric
D 1]
has the constant value, €aR = foap -1 o 3 and so is‘nPn—dynamic.

AB T £ €epp

CL(2,C), the spinor metric is €ap = ¢ Soup with ¢ real and positive, while

For VL.(2,C), the spinor metric, ¢ s 1s again non~dynamic. TFor

the tangent metric is gu\J = ¢2 an' Consequently, guv completely determines
EAB and can be used as the dynamic variable. For RL(Z,C), €rB = ¢ €°AB

. . , 2 _ i .
with & Teal, while guv ® nuv. Hence,lguv only determines ¢ up to gign

AB
but can probably still be used as the dynamic variable. On the other hand,

- for PL(2,C) and GL(2,C), the tangent metric, guv = |¢[2 nuv, only determines

the_spinor metrie, EAB = ¢ €°AB’ up to a phase which can vary continuously.

Consequently, one must use €28

as the dynamic variable. More work is needed
on this special case.
I have now coppleted my demonstration that in the same sense as ¢jk may

s - \ s ‘o P .
be regarded as a gauge potential in addition to A 2’ S° the metric, guv’ or

the spinor metriec, €, DAY be regarded as a gravitational potential along

u

W

3 - o . . . . s
with T a and 8 2" In the remainder of this section, I discuss the gravi-

tational fields or "curvatures” constructed from the gravitational potentials

or "connections," g, 8 and T.

-

Trom the spacetime connection, [ __, one constructs the spacetime

Ba

curvature,

m : _ Y
3ab a Bb b Ba T vya r 3b g vb r Ba _ (48)
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lation group. First, c?
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N . P
This is obviously analogous to the gauge curvature, F constructed

ab?

P
from the gauge connection, A a’
. o . . . .
What is the "curvature" for 6 a? From the heuristic point of view
. . . a8 a a, .
of equation (10), in which A eS8 - 6u is regarded as a compensating
field for the tramslation group, the "curvature" may be taken as the

commutator functions,

aB Y ¢B o B R "B bu

=e "0, A% - e 9 A . (49)

. . . a '
There are two objections to using ¢ as the "curvature' for the trans-

ofB

uB_iS not a tensor. This objection can be

rationalized away by pointing out that unlike APa and Tq the.frame,

ga’
e“a is a tensor; so its curvature need not be. Second, caaB'does not
take into account the interaction between fhe translation and rotatioﬁ
groups.

ﬁoth of these objections érg eliminated by using the torsion,

o Y B
Q ab 5 a 9 b (-ec YB O By YB

]
@
@

i
a»
D
+
—
@D

-

1
—
@

<

(50)

. o . .
as the '"curvature" corresponding to the frame, 6 2 The best justi-

: . o . : . .
fication for using .Q ap COmes from noting that an affine connection,
= s (51)

can be used to comstruct an affine curvature,
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I—{ab = aar-b v Bbr + Ea ~b Eb Ea
| o | a o o
Sy | T %l T Pa
21 o 0 L 0
J
o o Y v ¥ o o Y Y
+ r Ya & a r Bb ® b _ rr'yb ® b r Ba o
0 0 ! 0 0 0 0 0 0
pated ] )
R Q o .
b b :
Ba a , (52)
0 0 ' '
J
whose. components are just the linear curvature, ﬁa y, and the

Bab
. . a - :
torsion, Q ab”
Finally, the "curvature" correspondlng to the metrlc, g aB? may

be taken either as its partial derivative, 3 28 B’ or as its covarient

derivative, vagaB" I prefer the tensor, vagaB'
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5. The Action: S[v,g,0,T,A]
In this section, I study fhe action functional, S[w,g,S,F,A],

of a metric-connection theory with spacetime symmetry group, Gl, which
is also a local gauge theory with internal gauge group, G2. The dis-
cussion is completely analogous to the discussion of the action for an
internal gauge theory at the end of Section 1,

The action, S, must be invariant under both spacetime gauge trans-
formations and internal gauge trahsformations. It 1s usually assumed that

the action is local; i.e. that it may be written as

Siv,g,8,r,4] = f L /% s, o (1)
where the Lagrangian,
. . . Kk
L=L( lp!""a(m){b’g!"‘!a(l)g! B!"‘,B(J)es P"c.’a( )I‘, A’--osa(n)A)s

(2)

is a strictly local function of ¢, g, 6, T, A, and a finite number of their
‘derivatives. (To shorten notatiom, I will not write the derivatiﬁés in most
future expressions for the Lagrangian;) It is also usually assumed that
the Lagrangian, L, is a scalar under coordinate trénsformations, spacetime
gsymmetry transformationms, and internal gauge transformations. I make both
of these assumptions throughout the thesis.

A metric-connection theory is called special relativistic or global if

the connection, %, -, is required to be metric-compatible, torsion-free and

Bc
flat:

i

v = - g% =
qgaB 0, pe o, R Red 0. (3)

Regarding the covariant derivative of the metric, chug

Qabc’ as the “curvatures" for the metric, gag, and frame, 9

, and the torsiom,

ub’ one might

say that a special relativistic theory must have vanishing "curvatures" for

o o .
and T . , : . :
aR’ b’ BC
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A theory is special relativistic iff it is always possible to find
a cheice of admissible frame (called an inertial frame) and a choice of

coordinates (called inertial coordinates) in which the connection vanishes,

‘rhe fra=e is the coordinate. frame, and the metric components are constant:

£ coust,- 0% =5, I =9, ' (W)

Bap b b’ Be

Such a choice of coordinates and admissible frame is determined uniquely

_hp to a coordinate transformation of the form,

o - - (5)

2, = Y s, N ' (6)

T
where the au are four constants and the Au N form a constant matrix be-

longing to the representation, RT(Gl), of the spacetime symmetry group,

' Gl' For example, if Gl = CO(3,1,R) then it is possible to find a coordinate

 system for which the coordinate frame is conformal orthonormal and co-

variantly constant and further the conformal factor of the metric com-
ponents is-a comstant. Such a coordinate system is determined up to a

constant Lorentz transformation, a .constant dilation and a constant trans-—

lation.

Yotice that equations (4) can also be written as
3 g =0, c = 0, r = (. (1)

Consecuently, if one would rather regard the non-covariant quantities,

o o
arnd ¢ gy as the "curvatures" for gaB and 8 b2 then one can also say

that z theory is special relativistic iff there exists an admissible frame

o A0
c , and R

field ir which the "eurvatures," 3 g _,
cTaf By

cd’ vanish,

B
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To obtain a special relativistic theory, the constraints (3) can be
imposed in the Lagrangian by using Lagrange multipliers. Alternatively
and equivalently, they can be imposed by using inertial coordinates and
frames in the action (1), so that equations (4) are satigfied, In that

o

case, one only varies ¥ and A in the special relativistic action,

.- ° o
Stw,a] = Sl 5.6, 5054]

fl

° =0 &
J L(w,gas,éab,O,A)/:g— d X- , (8) _

where g;B denotes the constant value of the metric,

One might.also be interested in a theory in which only one or two of
the conditioné (3) are required to be satisfied. 1If one requires the
connecrtion to be metrié—comﬁatible and torsion~free but not flat, then
the metric-connection theory reduces to a metric theory. If only the co-
variant derivative of the metric is requiréd to vanish, one obtains a

metric—Cartan connection theory; while if only the torsion vanishes, one

‘obtains a metric-connection theory with a non-metric-compatible connection.

On the other hand if the curvature vanishes but Vg and/or Q does mot, then
one obtains a partially special relativistic theory with non-metricity
and/or torsion.

Any metric~connection theory which is not special relativistic is

cadlled general relativistic or local. Thus a local metric-connection theory
may have some classical solutiomns in which equations (3) are .satisfied but

mist also have some solutions in which they are not satisfied.
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The Lagrangian (2) for a local metric-connection theory may be

decbmposed as follows: First there is a matter Lagrangian, LM, obtained

by setting g, 0 and T to their special relativistic values (4) and adjusting

" the constant term:

\ - ¢ . o (LI fic : . ]
“LM(¢:A) = L(¢: gdB’ 8 bs-os A) + 5 2 A . (9)
. wh

. It is usually assumed that the energy density of the matter Lagrangian

has a minimum, The constant, A, is adjusted so that the minimum energy

is zero and the energy density is positive definite. The matter Lagrangian

is regarded as the Lagrangian for the special relativistic limit of the

theory. It may be decompesed as in Section 1:

LM(w,A) = LA(A) + Ls(w) + LI(wyA) + Lo (10)
where

LC = IM(Q,O), _ (11) |

Ls(w) = LM(¢,0) - Lc . (12)

L&) = L,(0,8) -1, . : (13)

Equations (9) and (11) show that the constant term in the full Lagrangian

is

fic
8l

o _ . .
8 bsoso) = 7 A+ LC . (14)

L(Ofggﬁ,

Next there is a gravitational Lagrangian, LG, obtained by setting

> = 0 and A = 0 and again adjusting the constant term:

LG(g’e>T) = L(O,g,S,T,O) - LC' : (15)
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The gravitational Lagrangian is the Lagrangian for the corresponding

matter-free or vacuum metric-connection theory.' Equations (14) and (15)

show that the constant term in the gravitational Lagrangian is

o | fie
L.(g°,,6 . ,0) = — A . (16)
G a3 b 81TL2

Thus A may be interpreted as a cosmological constant.
Finally, the remainder is the gravitationmal interaction Lagrangian,

L%, defined so that the full Lagrangian is

L(¥,8,6,7,4) = L (8,8,1) + L(y,4) + Li(¥,8,0,T,A). (17)

The sum 1, + Li is the interacting matter Lagrangian, while Lo + Li is the

interacting gravitational Lagrangian.

I Eostpone a detailed discussion of minimal coupling to Section III.4.
- It suffices here to. say that a metric—connection theory is minimally
-coupled to the gravitational field if ﬁhe.interacting mattér Lagrangian,
_LM + Li, can be obtained from the (special relativistic) matter Lagrangian,

LM’ by a specific procedure given in Section IIL.4.

The choice of gravitational Lagrangian, L is the topic of Chapter V.

G,

I here discuss the choice of gravitational Lagrangian which I consider to
be most analogous to the Yang-Mills Lagrangian (II.1.31).
If one regards the frame components of the metric, gaB’ the coordinate

o .
components of the l-form frame, § Q? and the mixed components of the

connection, T“Ea, as the gravitationel potentials analogous to the gauge
D

potentials, A"a, and regards the covariant derivative of the metrie, Vagas’

the torsion,‘Qaab, and the full curvature, R* ab? 28 the corresponding

B

gravitatiornal fields analogous te the gauge fields, FP then the gravi—

ab’

“tational lLzgrangian most analogous to the Yang-Mills Lagrangian is
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fic ab oy BS '
2o § e—
Ly Iy g g g 7,(Vaga8) (ngw)
1
fic " ac. bd B
~S——9g_ .8 &8 Q_0Q
16RL22 af _ ab t.ed
fic ac bd ~a B
16ma, 2 - 8 R Bab R,ch ? (18)

G

where uG is a dimensionless coupling constant and Li and L2 are coupling
‘constants with the dimensions of length. One could also introduce
. separate coupling constants for the trace part of Vagas, and for the anti-

, . PR
symmetric, symmetric and trace parts of R :

Bab
fic oy B6 - a — jild aB v8 a

L,=-S——=¢g g (Vg (Vg )-5——=g g (Vg )YVg)
CC gempt T T AR S 16n23° vt e

- fic o ab fic alaB] - ab

-5 —=5 ot % P R
16L 2 ab "o 1670 ab " [ag)
2 G
__;ﬁgg ﬁ(as) . ﬁ( B)ab _ ﬁcT 2% . ﬁBBab ] (19)
leG a ¢ 161r0LG aa '

These extra constants correspond to the arbitrariness in the choice of
group metric.’

I would regard a metric—connection'theorf with a gravitational Lagrangian
of the form (19) as a Yang-Mills theory of gravity. I do not know whether
such a theory even has a Newtonian limit. If it does, some combination of
the csupling constants, LI’ Li and LZ’ should be related to the Planck

1

léngth, L = { Gﬁ/c3 y%. I interpret the coupling constants, aé, uz and ag

as gravitational fine structure constants by analogy with the electro-

magnetic fine structure constant in the Maxwell Lagrangian (II. 1.32),




P

107

A weaker assumption than (19) is that the gravitational Lagrangian

iz minimally constructed from Vg, Q and R. This means that the gravi-

tational Lagrangian only depends on r%  and the derivatives of gaB and

Ra

a o ~Q, . . . . .
5" a through Vagas, Q ab_and R gab and a finite number of their derivatives:

L greennd Mg, 0,00, 1,00

= 140 8, Ve,...,"Pvg, 0, 0,...,9 V0, &,..., 7Ry, (20

I do not assume that the gravitationmal Lagrangian has the form (19) nor
even the form (20).

I finally discuss the YangwMills analogy from the alternate viewpoint
that the "curvatures" corregponding to gaB and Baa are the non-covariant

- o a
quanticies, aagaB and ¢ ab {(rather than the tensors Vagd and .Q ab). From

8
this point of view, one is tempted to conclude that the gravitational
Lagrangién most analogous to the Yang-Mills Lagrangian is the same as (19)

except that the first three terms are replaced by

fic ab 8
5 B EaY 88

-5 3 (2
o 2 (5,8,57 (38, &)
1 ,
: ! b 8
- 8 ___c_2 g2 g% Y (3,8,) (3,8, 5)
lﬁﬂLi Y
fie ac bd ‘a B '
-5 —
161TL 2 gas g g c ab c Cd L] (21)
2 .

However, the quantitiy (21) is not a ‘scalar, and, used as a Lagrangian,
it does not lead to tensorial field equations. The scalar closest to (21)
is the scalar curvature of the Christoffel connection, ﬁ, which differs
by the addition of a divergence from a quantity which is qﬁadratic in

~ o . . X . . : .
°.8.p and ¢ ab” Thus one 1s led to take the gravitational Lagrangian as
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patible, (so thatvﬁ
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1 = -5 fic - - 'ﬁcA ﬁ[dB] . ﬁ[_B]ab
lénL l6nmG a _ o
__jﬁ%g 7 (aB) ) ﬁkag)ab - ﬁ; - 2% ) af ab (22)
lGﬂuG a lGﬁuG oa 8

However, at least for the case when the full connection is metric com-

(as)ab = 0,) this Lagrangian leads to separate con—

servation of spin and orbital angular momentum (as’ shown in_Section‘V.Bc),

" which is undesirable.

The next closest gravitational Lagrangian is obtained by replacing R

by ﬁ
LG - _ s ﬁcz i - ﬁcA ﬁ[dB] ] ﬁtaB]ab
B 16nL 167 ab %R
fic - ﬁ(aB)ab A(as)ab _ ﬁcT ﬁauab ﬁBBab . (23)
léwaG l6ﬂaG

In the metric-compatible case, this is the Lagrangian which I study in
Chapter VI, and which Fairchild [1977] regards as the Lagrangian for a
"Yang-Mills theory of gravity." 'Comparing Lagrangians (19) and (23), I

choose to regard (19) as the better Yang-Mills Lagrangian for gravity.



